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Article

Failure prediction for HPC systems
and applications: Current situation
and open issues

Ana Gainaru1,2, Franck Cappello2,3, Marc Snir2,4 and
William Kramer1

Abstract
As large-scale systems evolve towards post-petascale computing, it is crucial to focus on providing fault-tolerance strategies
that aim to minimize fault’s effects on applications. By far the most popular technique is the checkpoint–restart strategy. A
complement to this classical approach is failure avoidance, by which the occurrence of a fault is predicted and proactive mea-
sures are taken. This requires a reliable prediction system to anticipate failures and their locations. One way of offering pre-
diction is by the analysis of system logs generated during production by large-scale systems. Current research in this field
presents a number of limitations that make them unusable for running on real production high-performance computing
(HPC) systems. Based on our observations that different failures have different distributions and behaviours, we propose
a novel hybrid approach that combines signal analysis with data mining in order to overcome current limitations. We show
that by analysing each event according to its specific behaviour, our prediction provides a precision of over 90% and its able
to discover about 50% of all failures in a system, result which allows its integration in proactive fault tolerance protocols.

Keywords
failure prediction, fault tolerance, signal analysis

1 Introduction

At the scale of today’s large scale systems, fault tolerance is

no longer an option, but a necessity. With a system mean time

between failures (MTBF) of less than 1 day (Kindratenko,

2011) and predictions that future systems will experience

delays of couple of hours between failures, current fault-

tolerance strategies face serious limitations (Snir et al.,

2011). A complement to current approaches is represented

by failure avoidance, a technique which is based on an accu-

rate failure predictor. Failure avoidance uses the information

received by a failure predictor to facilitate proactive fault-

tolerance mechanisms such as proactive job migration or

proactive checkpoint.

There are two types of predictions that are possible for

high-performance computing (HPC) systems. The first is

state prediction where algorithms estimate the state of each

node in the system. Current research uses diagrams in order

to keep track of the states and the transitions between them

in real time (Stearley et al., 2012; Chen et al., 2004; Salfner

and Malek, 2007) and in general they use the states to

decide whether a job can be scheduled on a specified node.

The second type is represented by failure prediction where

algorithms focus on providing information about when and

where failures will occur in the near future. This paper

focuses on the second type.

In general, failure prediction is based on the observation

that there is a fault–errors–failure propagation graph (Salfner

et al., 2010). The fault generates a number of errors that could

be observable at the system level, which represent either noti-

fications in the log files or changes in performance metrics.

The propagation chain ends with the failure which is observed

at the application level and usually is represented by an appli-

cation interruption. However, the error could propagate and

generate other effects such as performance degradation.

Our model is based on the observation that different fail-

ures have different distributions and create different
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symptoms in the system. Current state-of-the-art research

in the field of failure prediction for HPC systems is based

on data-mining approaches and do not differentiate

between the behaviour of distinctive failures. In our work,

we introduce the concept of signal analysis in the context of

event analysis, which allows us to characterize the beha-

viour of different events and to study how failures affect

each of them. This paper highlights the limitations of current

fault predictors and proposes ways of overcoming them by

combining our signal analysis approach with existing data

mining techniques. We show that by analysing each event

according to its specific behaviour, our prediction provides

a precision of over 90% and its able to discover about 50%
of all failures in a system. The paper focuses on a detailed

analysis of the prediction method by investigating the charac-

teristics and bottlenecks of each step of the prediction process.

2 Related work

Over the years, approaches on failure prediction have been

developed in relation to reliability theory and preventive

maintenance (Gertsbakh, 2000; Nassar and Andrews,

1985; Schroeder and Gibson, 2006). Models evolved by

trying to incorporate several factors into the distribution,

for example the manufacturing process (Vilalta et al.,

2002) or code complexity (Farr, 1996). However, all of

these methods are tailored to long-term predictions and

do not work appropriately for online failure prediction.

More recent methods for short-term failure prediction are

typically based on runtime monitoring as they take into

account a current state of the system. There are two levels

of online failure prediction in literature: component-level

and system-level failure prediction. The first level assumes

methods that observe components (hard drive, mother board,

DRAM, etc) with their specific parameters and domain

knowledge and define different approaches that give best

prediction results for each (Hwang et al., 2012). One exam-

ple of this type of approach is to compare the execution of

good components with failed ones. A couple of studies from

different fields that fit in this category are Bolander et al.

(2009); Patra et al. (2010). For the HPC community, one

example is Zheng et al. (2007) in which matrices are used

to record system performance metrics at every interval. The

algorithm afterwards detects outliers by identifying the

nodes that are far away from the majority.

The second level is represented by system-level failure

prediction, in which monitoring daemons observe different

system parameters (system log, scheduler logs, performance

metrics, etc.) and investigate the existence of correlations

between different events. In the last couple of years, a signif-

icant number of papers have been proposed that focus on

providing predictions by analysing different HPC systems.

However, most predictors are able to use the information

extracted in the training phase for only short prediction span

after which a new training phase is required. For example,

Zheng et al. (2010) is using almost 3 months of training for

predicting only half of month of execution. Another example

of a current fault predictor is given by Yu et al. (2011) where

the authors compare two failure prediction approaches and

study the influence that the observation window has on the

results. Gu et al. (2010) use a meta-learning predictor to

chose between a rule-based method and a statistical method

depending on which one gives better predictions for a corre-

sponding state of the system. Another approach for analysing

the logs is given by Nakka et al. (2011), who investigated

both usage and failure logs.

The study presented by Zheng and Yu (2011) makes a

difference between system and application failures. The

authors use RAS logs and job logs for filtering out the fail-

ures that do not have any effect on jobs running in the sys-

tem. This allows them to make a couple of interesting

observations that could help future failure predictors. A

more general approach is made by Rajachandrasekar

et al. (2012) where the authors propose a middleware solu-

tion between the application and different analysis mod-

ules. Failure predictors and other decision-making

engines that rely on distributed failure information can ben-

efit from their framework to facilitate proactive fault-

tolerance mechanisms such as preemptive job migration.

A different approach is given by Lou et al. (2010) and Xu

(2009), where the authors investigate parameter correspon-

dence between different application log messages for extract-

ing dependencies among system components. Another

approach using time-series analysis is presented by Wang

et al. (2010) where the authors implement different process-

ing methods, such as spike detection and subspace method

in order to find outlier patterns which indicate anomalies in

monitored systems.

There are a number of ways of building prediction mod-

ules for large-scale systems. In this paper we focus on ana-

lyzing only log files for the purpose of prediction. Log files

give useful information about many components in the sys-

tem, however, due to their large size and unstructured for-

mat they are very complex and cannot be analyzed

manually. In general, current state-of-the-art research is

using data mining algorithms for automating this process

(Yu et al., 2011; Zheng et al., 2010; Gu et al., 2010; Nakka

et al., 2011; Liang, 2006). Most of these algorithms are

using the same workflow: they group the messages in the

log file into categories, filter redundant events both in time

and space, extract correlations between events based on the

small filtered set of log messages and in the end use the cor-

relations to predict future events or failures.

Each step from the workflow introduces imprecision or

noise that influences the accuracy of the prediction. In this

paper we are analyzing and characterizing this noise. We

also propose a novel methodology that decreases the noise

and is able to offer predictions that can be used on real pro-

duction systems.

3 Methodology

Our methodology follows the workflow presented in Fig-

ure 1. The modules are divided into two major phases:

2 The International Journal of High Performance Computing Applications
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offline characterization and online prediction. The first

phase is called training phase and it works on historic event

logs by first extracting all event types generated by the sys-

tem and then by transforming the logs into time series inter-

preted as signals. Signal analysis allows us to characterize

the behaviour of events affecting the system, highlighting

the differences between failures. Data mining is an efficient

method for extracting patterns in high-dimensionality sets

so we use one of these methods to provide accurate correla-

tions between defined behaviours to the online modules.

The second phase is responsible with monitoring the

incoming stream of events and deciding when to trigger a

prediction. Also, modules in this phase are updating the

correlations and the characteristics of event’s behaviour

to reflect the state of the entire system at different

moments. We used the advantages of both data mining and

signal analysis by offering a hybrid approach for predicting

failures in HPC systems. We also implemented a propaga-

tion module that extends the prediction with location infor-

mation so that the results could be applied for proactive

migration or proactive uncoordinated checkpointing. The

offline phase is described in more detail by Gainaru et al.

(2012a) and the online by Gainaru et al. (2012b).

The following subsections follow the workflow of log

analysis and prediction methods presented in the related

work section. We will highlight the limitations of data min-

ing algorithms and how our model overcomes them. At the

end of each section we will discuss the weaknesses of our

approach and future directions for optimizing them. Before

starting the analysis, we define in this paragraph the main

parameters that will be used in the following sections. Pre-

cision is seen as a measure of fidelity and represents the

proportion of correctly found failures to all identified

failures. Recall is the ratio of corrected identifications to all

of the existing failures in the log and represents a measure

of completeness. The lead time represents the time between

when a prediction is triggered and when the failure occurs.

The lead time can be used by fault-avoidance techniques to

take a proactive action before the failure manifests in the

system.

3.1 Group events of the same type in clusters

In the preprocessing step, we use the Hierarchical Event

Log Organizer (HELO) (Gainaru et al., 2011) on the raw

logs, resulting in a list of message templates that represent

frequently occurring messages with similar syntactic pat-

terns. Examples of logs and their characteristics can be

found in Table 1. These templates represent regular expres-

sions that describe different events in a system. In the

online phase, we use HELO online to keep the set of tem-

plates updated and consistent to the output of the system.

Monitoring each event type separately is important since

information regarding the events of interest might be hid-

den when the analysis is made at a lower granularity. For

example, when looking at all types of failures at once, the

logs show close to no spatial propagation. However, when

analyzing only a certain type of filesystem errors, about

20% of failures affect only one node, the rest propagating

on a variable number of locations (Heien et al., 2011).

For each of the event types, we use ELSA (Gainaru et al.,

2012a) to map the number of occurrences per time step into

the corresponding signal. After analyzing the signals for dif-

ferent HPC systems, we discovered that events are character-

ized by three types of signals presented in Figure 2(a):

periodic, noise and silent. Usually, periodic signals represent

Figure 1. Failure prediction methodology: (a) offline training; (b) online prediction.

Table 1. Computing platform configuration and template examples.

System Size (MB/day) Rates (lines/minute) Template example

BlueGene/L 5.74 15 node card is not fully functional
Spirit 55.58 339 log_error::is_request bad attempt to connect from * address nþ
Mercury 152.4 868 node_bailout, dþ poll failed from node dþ * job will be killed
Current system � 2 GB/day � 5000 vm: killing process %s nþ

Gainaru et al. 3
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events generated by monitoring daemons. Silent signals are

defined as having a flat line around amplitude zero, and only

from time to time presenting burst of messages and are usu-

ally characteristic for error messages, for example in case

of PBS errors. However, sometimes normal messages behave

the same and human knowledge is needed to make the differ-

ence between them. This is the case, for example, with ‘‘Job

starting’’ messages. Noise are chatty signals that send notifi-

cations very often, both during the normal or faulty behaviour

of the system. Anomalies in these event types usually repre-

sent a precursor to a failure in the system. One example are

memory errors that cannot be corrected by ECC that present

beforehand an abnormal number of correctable errors.

Discussion 1

Most data mining techniques rely on human expertise and

cannot be used without this input in order to extract the event

categories. Manually identifying categories is a time-

consuming process and might result in category sets incon-

sistent across different systems. Moreover manual extraction

usually generates wide granularity categories that affect the

future analysis. Our focus is on providing an efficient way of

identifying the event types that any system generates. In Gai-

naru et al. (2011) we showed that our tool can identify the

correct templates with over 90% accuracy when compared

with system administrators knowledge. Moreover, we ana-

lyze BlueGene/P that uses a different error code for each

event type (e.g. e10000_ras_link_error for a specific type

of link failure). We compared the templates generated by

HELO with the error code list.

HELO generates templates that consist of constant words

and variables. Variables identify manipulated objects or

states for the program and are replaced by wildcards. In case

constants are mistakenly replaced by wildcards the template

becomes too general and, when variables are identified as

constants by HELO, we call the corresponding templates too

specific. We plotted the ratio of general and specific tem-

plates generated by HELO compared with the error codes

of BlueGene/P in Figure 3(a) and how these differences

affect the final prediction in Figure 3(b). Cluster goodness

represents the similarity threshold that defines when two

messages are part of one single events. Depending on the

cluster goodness, there is a 2–30% difference between the

Figure 2. Signal analysis: (a) correlation methodology for each type of signal; (b) distribution of lead time.

Figure 3. Preprocessing analysis: (a) percentage of incorrect templates; (b) precision/recall decrease.

4 The International Journal of High Performance Computing Applications
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template set generated by HELO and the error codes of Blue-

Gene/P. However, this is translated into a much smaller dif-

ference when looking at the impact on prediction, the highest

impact showing a median difference of only 5% for recall

and 3% for precision. Only for extreme values the impact

is higher. We argue that this step affects in a small way the

final prediction so automatic processes provide great bene-

fits compared with human interaction without significantly

affecting the final results.

Discussion 2

Because data mining is expensive by nature and the size of

the log files are posing serious limitations on the analysis

step, filtering is used to reduce the size of the analyzed

dataset both in time and space without loosing the log’s

characteristics. One great advantage of using signal analy-

sis is that it eliminates one of the steps in the workflow used

by the pure data mining approaches. Filtering redundant

events is no longer necessary since the signals compress the

data in the log in a natural way without losing any occur-

rence. The limitation of filtering methods was analysed

by DiMartino (2012) by creating a log generator that keeps

the properties of real logs and that gives a ground truth with

which to compare the results of different filtering tech-

niques. Our observations show that the noise from this step

filters out 7% to 12% of the events that might be useful to

prediction.

3.2 Extract the correlation between events

In our experiments we observed that different failures show

different distributions and behaviours. We use different sig-

nal analysis techniques to shape all of these behaviours and

to characterize the way failures might affect them. This rep-

resents an important step since data mining algorithms

apply the same extraction methods on all data entries.

The process for extracting correlations with ELSA is

presented in Figure 1(a). In the first step, anomalies are

extracted from each signal by first using wavelet functions

to characterize the normal behaviour of each signal and

then by monitoring changes in the signal’s normal fre-

quency and intensity. The right part of the figure shows the

transformed signals after filtering out the normal beha-

viour. What is left for all signals are two values, zero when

the messages are generated during the normal behaviour

and one when an anomaly occurs. This process ensures that

the data mining algorithms for extracting correlations are

applied on the same type of data points. The algorithms

in detail are described by Gainaru et al. (2012b)

To test the noise induced by this step we created a log

generator that takes into account system parameters that

were observed on Inrepid, the BlueGene/P system at ANL

(Alam, 2008). Table 2 presents the parameters and their

values that were used for the experiments. The log genera-

tor first creates failures in the log corresponding to the sys-

tem parameters and then adds precursors based on a

predefine correlation set. The correlations set represents the

ground truth and is based on our past experiences with HPC

systems. We used the values found after analysing Blue

Gene/L from (Gainaru et al., 202b).

Discussion 3

The generated log is created so that all failures are predict-

able allowing the results obtained by using ELSA to repre-

sent the noise induced by the analysis process. Figure 4(a)

shows the percentage of incomplete or completely missing

sequences extracted by ELSA or by using a data mining

technique, such as that in Zheng et al. (2010). The data min-

ing algorithm that was used is the one incorporated in

ELSA but applied on the raw log, by completely excluding

all signal analysis modules from the process. We broke

down the results by looking at correlations that incorporate

different signal types. The figure shows that ELSA gives

better results for correlations between noise signals or

between signals that have different behaviours. Owing to

this fact, overall ELSA cannot detect approximately 25%
of the correlations that were used to construct the logs

while the data mining approach has far worse results by los-

ing about 52% of the correlations.

Discussion 4

In order to get a better understanding of the impact of log

characteristics on prediction’s results, we computed the

precision and recall values by predicting both the syn-

thetic log and also the logs from a real HPC system. More-

over, we analysed at the same time, how data mining

algorithms behave compared with ELSA’s results in Fig-

ure 4(b). Our previous observation is visible here as well,

there is a difference of more than 20% of recall between

ELSA and when only using data mining. Moreover, the

recall value for ELSA is approximately 78% which can

be explained by the fact that ELSA is not able to find

almost a quarter of the initial correlations. This 22% rep-

resents the noise of the correlation extraction method used

by ELSA and the noise given by the complexity of the

logs. Interestingly only approximately a third of the corre-

lations lost by ELSA are responsible for the high decrease

Table 2. System parameters.

MTBF Failure distribution Nodes System lifespan Propagation Lead time

1 day Weibull 40,960 1 year Yes Weibull
Scale¼8116.7 20% of failures Mean ¼ 50s
Shape¼0.387187

Gainaru et al. 5
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in recall. In the future, we plan to isolate them and further

study their properties.

Discussion 5

When looking at the results obtained on the logs generated

by Blue Gene/L, we observe that the precision is close to that

for synthetic logs, however the recall is only about 45%
(Gainaru et al., 2012b). We consider that this 45% together

with the rest of 22% up to the recall value obtained for syn-

thetic logs represents the predictable set of failures from

Blue Gene/L. The rest of 33% is represented by unpredict-

able failures represented by failures that do not offer precur-

sors in the log file. This indicates performance metrics or

other precursors detectors might give more information

before a failure and could help in increasing the results of our

predictor.

3.3 Failure prediction

Figure 1(b) shows the overview of the prediction process.

The observation window is used to decide whether the

current event is an anomaly. The analysis time represents

the overhead of our method in making a prediction: the

execution time for detecting the outlier, triggering a cor-

relation sequence, and finding the corresponding loca-

tions. The time delay until the predicted event will

occur in the system is defining the prediction window,

which starts right after the observation point but is visible

only at the end of the analysis time. The visible prediction

window represents the lead time that a fault-avoidance

technique might use. The values used for the lead time

given by the correlations are presented in Figure 2(b).

After the analysis using the log generator, we observed the

lead time distribution shifts to the left which means we

obtain shorter lead times. This is due to the correlations

loss seen when using ELSA. The two problems are related

and have the highest impact on prediction’s result so we

plan to analyse different correlation extraction methods

into more detail in the future.

Discussion 6

All modules implemented in ELSA have online phases

where they update the data generated in the training phase.

In general, current research is not updating the correlations

found offline and thus has limitations when using a short

training set. We believe this limitation makes the prediction

unrealistic when used on real production systems. To study

the impact of not adapting the correlation set on the predic-

tion’s result, we used the data collected by ELSA during the

training phase to predict the next 9 months of BlueGene/L

and plotted the recall for each month in Figure 5(a). We

have similar results when using the synthetic logs, however

due to space limitation we did not present this figures. It is

visible that the prediction keeps a high recall value only for

the first couple of months and then decreases dramatically.

By adapting the correlations and signal characterization

over time we were able to keep the recall value almost con-

stant throughout the entire studied life cycle of the system.

The recall value presents a slight increases at a 3-month

interval when ELSA is redoing the offline analysis. In the

rest of the time, ELSA is relying only on the updates of

existing correlations.

Discussion 7

For some fault-avoidance techniques the cost of predicting

a failure that does not appear in the system is low compared

with experiencing an unpredicted failure. This is, for exam-

ple, the case of object migration with Charmþþ (Zheng

et al., 2004). Therefore, we did a study of the recall/preci-

sion trade-off in Figure 5(b). In general, the recall increases

when using low threshold values for deciding when a

Figure 4. Correlation analysis: (a) percentage of incomplete/missing correlations; (b) precision/recall on BlueGene/L and synthetic logs.
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correlation is strong. Interestingly, the maximum recall

value reached by ELSA is 63% which is close to what

we observed in the previous section as being the amount

of predictable failures. However, the cost in precision is

really high, making more than 70% of ELSA’s predictions

wrong. It is also noticeable that the precision decreases at a

higher rate than the increase in recall. Depending on the

fault-avoidance technique different values might be the

best option.

Discussion 8

In a more detailed analysis, we break down the predicted

events into different categories. The results are presented

in Figure 5(c), where each bar represents how often a cer-

tain type of error appears in the log as a percentage reported

to all errors in the system. The dark portion of every bar

represents the correctly predicted cases out of the total

occurrences. We observed that the node card errors were

the type that our system detected with a high rate; more

than 80% of the occurrences were predicted. Overall, we

observed an uneven distribution between different compo-

nents in the system. For example the results obtained for

network and cache failures are almost one order of magni-

tude lower than the results for network card. For the future,

we plan to focus on analysing each component individually

and try to understand what influences the prediction pro-

cess for each of them.

4 Discussion

Accurate predictions are necessary for proactive fault-

tolerance solutions. These solutions have the benefit of

reducing the overhead due to fault-tolerance actions and the

amount of lost work due to predicted failures. However, an

extra overhead is added due to wrong predictions. The

trade-off between this overhead and the benefit is highly

influenced by the predictors recall and precision. We

believe that understanding current prediction methods and

Figure 5. Prediction analysis: (a) recall on different months; (b) recall/precision tradeoff; (c) recall breakdown on components.

Gainaru et al. 7
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their limitations is crucial in designing failure-avoidance

techniques for exascale systems.

The correlation extraction method has the highest impact

on prediction results. Therefore, the choice of the methodol-

ogy is the utmost part of the prediction. We plan in the future

to analyse various algorithms and study their results on

large-scale production systems to get a better understanding

of their limitations. Data mining algorithms have particularly

poor results on noise and periodic signals. Our observation

that failures do not affect the same way the system and are

represented in different ways in system logs allowed us to

analysed failures differently and, in the end, offer more accu-

rate predictions.

Adapting the set of correlations and behaviour charac-

terization is a necessity when working on real systems. Cor-

relations using the last couple of months become unusable

after less than 1 month of predictions. The pace of change is

becoming increasingly fast for current and future HPC sys-

tems, so it is no longer viable for system administrators to

give their input in any of the online analysis steps.

With the implementation of more accurate failures predic-

tors there have been developed a number of mathematical

models (Aupy et al., 2012; Gainaru et al., 2012b) that deal

with characterizing the benefit of merging predictors with

current checkpointing protocols. We combined ELSA with

FTI (Bautista-Gomez et al., 2011), a fast multi-level check-

pointing protocol and observed the overhead induced by the

predictor is between 2% and 6%. When using the mathemat-

ical models with our predictor parameters and overhead, we

observe that the benefit of this fault-avoidance technique can

exceed 20% (Bouguerra et al., 2013). Another direction of our

future work focuses on providing real implementations for

different fault-avoidance protocols and computing their

actual benefit when running large-scale applications in

production.

5 Conclusions

Failure prediction has made outstanding progress in the last

5 years and for future HPC systems this technique could

give benefits of over 20% when associated with different

fault-avoidance techniques compared with the classical

fault-tolerance approaches. Understanding the properties of

a prediction module and exploiting them for enhancing

fault-tolerance approaches and scheduling decisions is cru-

cial for providing scalable solutions for dealing with failures

on future HPC systems. In this paper, we described the prob-

lems and limitations faced in developing a accurate failure

predictor. We show that a good solution is obtained by com-

bining two different analysis techniques: signal analysis for

shaping the normal behaviour of each event type and of the

whole system and characterizing the way faults affect them

and data mining for analysing the correlations between these

behaviours. We analysed the deficiencies of our method and

potential solutions in order to evolve our predictor into a

viable solution for failure avoidance approaches. For the

future, we plan to improve the results of our predictor by

inspecting different precursor detectors to include in ELSA

and by analysing in detail different error types for which our

system has a low recall. Also, we will study to a wider

extent, the practical way the prediction system influences

current fault-tolerance mechanisms.
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